a2 United States Patent

Yang et al.

US009442723B2

US 9,442,723 B2
Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND APPARATUS FOR INTEGRAL
IMAGE COMPUTATION INSTRUCTIONS

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Liu Yang, Beijing (CN); Bin Wang,
Beijing (CN)

Assignee: Intel Corporation, Santa Clara, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 823 days.

Appl. No.: 13/730,665
Filed: Dec. 28, 2012

Prior Publication Data

US 2014/0189291 Al Jul. 3, 2014
Int. CL.

GO6F 9/00 (2006.01)
GO6F 9/30 (2006.01)
GO6F 9/355 (2006.01)
GO6F 9/38 (2006.01)
GO6F 15/80 (2006.01)
U.S. CL

CPC ... GO6F 9/30036 (2013.01); GOGF 9/30014
(2013.01); GOGF 930018 (2013.01); GO6F
9/30145 (2013.01); GO6F 9/3555 (2013.01);
GO6F 9/3893 (2013.01); GO6F 15/8053
(2013.01)
Field of Classification Search

CPC .o GOGF 9/30036; GOGF 15/8053

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,565,019 B2
2008/0252717 Al
2011/0211233 Al
2012/0166761 Al
2012/0260061 Al

OTHER PUBLICATIONS

7/2009 Dong et al.
10/2008 Moon et al.

9/2011 Yokono

6/2012 Hughes et al.
10/2012 Reid

PCT International Search Report for PCT Counterpart Application
No. PCT/US2013/046412, 3 pgs., (Nov. 12, 2013).

PCT Written Opinion of the International Searching Authority for
PCT Counterpart Application No. PCT/US2013/046412, 4 pages,
(Nov. 12, 2013).

PCT/US2013/046412 Notification Concerning Transmittal of Inter-
national Preliminary Report on Patentability, mailed Jul. 9, 2015 6
pages.

Primary Examiner — Zachary K Huson
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott, LLP

(57) ABSTRACT

A method is described that performing an image integral
calculation by creating a second vector and creating a third
vector. The second vector is created by executing a first
instruction that adds alternating elements of a first vector to
respective neighboring elements of the first vector and
presents resulting summations into said second vector. The
first instruction also passes through the respective neighbor-
ing elements to said second vector. The third vector is
created by executing a second instruction that adds elements
of one side of the second vector to an element of another side
of the second vector and passes through the another side of
the second vector.

19 Claims, 19 Drawing Sheets

551

560 <

561 <

ALTERNATIVELY SELECT
INPUT VECTOR ELEMENTS
FOR ADDITION AND
PASS THROUGH

!

ADD ELEMENTS CHOSEN
FOR ADDITION WITH A
NEIGHBOR ELEMENT;
PASS THROUGH ELEMENTS
CHOSEN FOR PASS THROUGH

l

CHOOSE ELEMENT FROM
ONE SIDE OF INPUT
VECTOR FOR ADDITION

}

PASS THROUGH ELEMENTS
FROM THE ONE SIDE,
ADD CHOSEN ELEMENT
TO ELEMENTS OF
THE OTHER SIDE

552

562

US 9,442,723 B2

Sheet 1 of 19

Sep. 13, 2016

U.S. Patent

20} 3OVdS
Y3LSI9TY YOLDIA
901 200
001 30vdS 30VdS
4318193 4318193
HOLDIA 49
MSYI
11 %
A \ 4
1 1 1
1 A 4 A 4 1 1
I T ! _
LS N "
L ol | 17501 “
L ONEN] HOL3 | aa09ad
1 ! 1 <|_.<D 1 DZ< IOn_.MH_
| ~ L | NOILONYISNI
NS0l _

“ | N0l “

Mova aLEm | NOILNO3XT ! !
1 1 1

10}

U.S. Patent Sep. 13, 2016

FIG. 2A

AD

Sheet 2 of 19

US 9,442,723 B2

AND

FIG. 2B

B,E

AND

CF

U.S. Patent Sep. 13,2016 Sheet 3 of 19 US 9,442,723 B2

302 301
0,0) s \ .
N

_] /X] I
= 7 :/
_ I
- |
— I
- I
_ > !
] \] > |
| \V/ > |

——————————————————— -‘ [

(x.Y)

:

I

I

v

y FIG. 3A

X3 X2
G Y
MACHINE
CYCLE
SECOND
MACHINE ADD
CYCLE
THIRD
MACHINE
CYCLE
4 v v
X+ X1+ X2+ X3 XG+X1+X2 X@+X1 XJ

FIG. 3B

U.S. Patent Sep. 13,2016 Sheet 4 of 19 US 9,442,723 B2

INPUT VECTOR OF
—— FIRST INSTRUCTION

(FIRST MACHINE
CYCLE)

OUTPUT VECTOR OF
FIRST INSTRUCTION
- — - ¥ - —=INPUTVECTOR
OF SECOND
INSTRUCTION

\) 1 (SECOND ACHINE
J CYCLE)

o

QUTPUT VECTOR
Y WU NS U R [__¥__ OFSECOND
INSTRUCTION

X3+X2+X1+ XD X2+ X1+ Xd X1+ XQd X9

\ J \ J
Y Y

421 422

U.S. Patent Sep. 13,2016 Sheet 5 of 19

501 ~—~ 3 2 1

US 9,442,723 B2

SO AW AWAW

504 ~—y ADDER ADDER

FIG. 5A

TO MUX
BANKS

ROM
506

U.S. Patent Sep. 13,2016 Sheet 6 of 19 US 9,442,723 B2

3 2 10
VYYYyv VYYVY VYYVYY YYVYY
NAYNAYTAY TO MUX BANKS
ADDER ADDER T
ROM

AAAA

A& A& A& A

U.S. Patent

561 <

Sep. 13, 2016 Sheet 7 of 19

FIG. 5C

ALTERNATIVELY SELECT ,\551
INPUT VECTOR ELEMENTS
FOR ADDITION AND
PASS THROUGH
552
ADD ELEMENTS CHOSEN | >
FOR ADDITION WITH A
NEIGHBOR ELEMENT;
PASS THROUGH ELEMENTS
CHOSEN FOR PASS THROUGH
A 4
561
CHOOSE ELEMENTFROM | 7
ONE SIDE OF INPUT
VECTOR FOR ADDITION
A 4
PASS THROUGH ELEMENTS 562
FROMTHE ONESIDE, [~/
ADD CHOSEN ELEMENT
TO ELEMENTS OF
THE OTHER SIDE

US 9,442,723 B2

US 9,442,723 B2

Sheet 8 of 19

Sep. 13, 2016

U.S. Patent

ittt — T m-=—-r--- — - Y Y N ———)
I 775 00 [F99a1Ed|. ®R | g RIEY S w9 9 NN
BT] o ST YR - R = B R BRI
! g
| SLVIOIN T ST | Vv | T [TV vIYC \ | 89710 | AOMIN f 3 qiomy | 3gve | LYNHO]
i | “ “ | 09 TVH0dIIINON
! “ ! ! L SSI)07 AYONAN
j=—-——=- — ienbaial il —_— \ Y Y N e
I 779 000 %9907 |, 9% ov59 NENEN (— 779 9 SENE,
4 aEl | Hidil 4980 | B vormana | wieae " | sy T o R
_ NN [~ s TWH0dNAL 43
“ .m@.mé 3| viva ..h.\nmm!.mumo.m v1va 0 | SSYID | AMONIN fysigiggy | 3w | LYNO4,
! | 76,013 | “ “ 629 WHOdNAL "9
! ! (H3)INH | “ | '$S300V AYOWN $8300Y
“ “ NOILOIAT 1 I AHONIW
1 1 1
1 1 1 1 1
1I===-== E— p— 4 Y Y wa Y = | o= |)
g 09 [599 a3 - Vo7 9 w0 e
S | i, | i | B | o | S| B i | g
1
| VR3] v WHOISNVBLYLYG | S8V | ONT | u3isiony | ova | LYWeOd)
!] m m ! 819 NOLLYA3dO
S SN R I 30ALI'SSI00V RO ON _
e 9 799 @ 949 A7 79 W |
S8 | Hiam o O G | T | Y fsshoor | om | oam | (B
“ 31YIGINNI NSV [INFWETE %odmlll aNNoY SSY1) AJONAN X3ANI NOILYH3d0 ._.<_>_m_ou_“
ST | viva o e L A SSYI0] o Judisiony | aevg | LYWROA
1 1 1 1 1 o
! Loy ! | 019'd0JAAL THINOONNOY 509
009 LYWHO4 NOLLONSLSNI _ | 01348y | ! b TI04°SS300Y AMONIWON SS300V
ATON3IZ 401034 OR339 ! ! ! ! ! AN
\ |||||||| m———m—_—— : A : 71 : : lllllJ
e vl TP < T 0 3 w0 ==
B | Huam | 299801 T Vs g | oE | W g | g |8
_ WSV | ININBTA [= 555= 3| (18l VHaW | sy | GHEE |y EER
N VR IS yaiicon | XFONT | NOLLYY3dO | vy
ST 3| viva | 4% 1 3OS] oy vl NOLvEdO NOLLYINIWaNY glson] 1% | g g4
L $19 07314 300040 TIN4 L L

US 9,442,723 B2

Sheet 9 of 19

Sep. 13, 2016

U.S. Patent

|jm———— S m— —_————_——— — re——3\ p— ™ — — |
i 00 [P99QTEH|. @9 gsg [89T 7D 00a 779 9
B T T EEE R R) RO B e T e Y
| YSYA | INGNE R [~ 785
| SLACNA 200 “vava | 3’ 39 oloan 0Y048) ysvh 3 S8v10 | AHOR3M) aisiozy | “3sve L0d;
“ L “ | | I
i L ! ! ! WMDY WIW
| T | | |
1 1 1 1 1 1 ON®
" " " " " " $S300%
| | | | | | >W_O—>_m—>_
| | | | | |
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
| L | | |
| | —_— - N
_IIHII p— 2 J\ ' Y Tas N — J— 1
“ Z9 09 (¥99Q73H 9659 . 9 gerowol Yor9 79 42 W !
v {13 HIGM o 0EH - f7ygel 01Id $8300v | @13 G B
'3 viaTAm | ISYW [INGWIT "] HLIONTT [37167 | TOMINOD wm@._o AJONIW | X3ANI | NOILYH3dO 1YWYO mn
2T 44| viva MOIOIA | ™7 yevivILemf SSY1O | ONT Jwdisioqy | Jevg | HYWO4,
| L | | i 110°d0 3dAL
! Lo ! ! L3I0 YW 0V WaN ON
| 7 | 0@ [v99 0 W [| 0 Vg | B W[W | g
'3y |07 | Ham o 3 |Tvms| omEd &Y |sspoov | ams | oaEd |
U 3iviaane 1 SYW [INGWE 3 "] NOILYY3dO | aNy { TOHINOD SSY1 AJONIW | X3ANI | NOILYY3dO E_\,_mo“_“
j ST M| viva aNnGy | fosvW Ll ST L TToNT Jualgioy | 3gve | LTAEOS,
<
m | vzgg ! m m | 2190 3dATHINO ONY 69
009 LYWHO4 NOLLONULSNI ! REEY ! ! ! Levd WM 907 WA ON S
NON3I HOLOA DR3N39 ! LN ! ! ! o
_\ |||||| — ey el "SRR = p— — _———
L7 09 (PI9QEH| HwH o 9 €49 899 — 779 AR g
! Qm_mw Qa4 | HLam |4 4dSiIgr 0% em_u,wmm 03 | aEd | o e Qe o
] == ——=1 0134 WHdlv | ssv1o| Q134 i
3rvigaa | 28V | INWETB oo™ Tt St —— udiqon | 230N | NOLLYE3dO |) ypiuyay
“ 3| viva | Y 059 @131 NOILYY3O NOILYLNIWONY YISO | 3svd ' g9 9|4
...... 7 S - 7 S Y

19 1314 300340 T1N4

US 9,442,723 B2

Sheet 10 of 19

Sep. 13, 2016

U.S. Patent

- oms%mm
0s/ NIGOON
—— %/ﬁm 07314 NOILY43d0 3V Y4
! 0L ehin
%L W8 QEEMM 9L bk XA A LALALALA LA L A] fw wn [l 4] 200
O N G G S e %
[oes T oo | [ATA[AIA] [T o3] [a] [R[e]x]¥] GILdVNI000d0 opp 3
79 01314 X3ONI 4318193 P O KL LYYOA
718 .
071314 300040 TIN4 d. 9ld
00 LYN404 NOLLONSISNI ATON3IH ¥OL03 DH1034S
r N A8 Q311dILINW SI HOHM s Gz. (1314 N
HOLOV4 INFWIDY1SIC FHL ATNO STTOH 2z ONIJOON3
1ng'N.84SI0 SY 0L Q3443434 (10=00N NIHM s XI434d
N.8dSI0) 8299 01314 ¥0LOVA ININFOVdSI .] 048 Q134
, . . 06) A 0L, LYWHO4
Nfs | i wum“ om | 3300040 Y ! GO | 30000 @

i ! ! |- ~ —A —A— — N
|||||| (T S W S | | _C_,
o, ONHoRo 58 H oo AL AT [SR T 2T o AT [W [l s oF 29

——y—! “ " " —— " "

(01=00W NIHM Z€dSIT) I _ _ 58 _ i
¥798 01314 NNV TSI 01314 v138 0L X3Y
— T = 1o w1 1 . | 21 898 41314
o S % | WL | ol WA $98 01314 HLOIM
m@mm vwxx Mm Wy | 93y | aow SSV19 ININAT3Y1YC
o 2t 5oy 0 ¢ 99\ 20 X1434d X33 >
|)
EGERY s A8 1Ve Qo 999 01314 ¥3HIA0N V. '9ld

US 9,442,723 B2

Sheet 11 of 19

Sep. 13, 2016

U.S. Patent

8 'Old

by L€ wwz
<08
SLig 9 diY
028
SL1g 28 YSOXI i SLig 9% 4
== SLid 8z}
S119 z€ SOV143 ——
— Sl wwx | b wwA
078
SLig91 MO4 0
4
B
S1ig+9
S1189) MSd 18 SHILSIOTY YSYW LM
068 3114 ¥3LS193Y
1¥74 INI GHOVd XINW Ouwx | Ouwwf Ouue |
SLig +9 >
, A \ SLIgzlg
7 _ 018 _SY3LSI9FY HOLOIA
|
|
|
_ SLIg 9L X9
Q3SVITY i =g
. ! SY3LSIOTY ININOIS
1
\ Y 7 S119 %9 X 9)
S119 08 5z8
(448) | 43151934 380dYNd TYHINTD
008
GY8 3T HILSIOTINOVAS dAUYIVOS Sy 1o 1o ML SI93Y

US 9,442,723 B2

Sheet 12 of 19

Sep. 13, 2016

U.S. Patent

g6 "Old

V906

JHOVO Y1va 11

A

V6 "OId

HHIOMLAN ONIY

€06

A

A 4

06

JHOVD
¢13H1 40 1354NS TvO01

F 3

906

JHOVO 11

716
SY318193d
40103A

6
SH31S193d
4v'1vOS

016
1INN
d0103A

443 VZcee
L143ANOD 143ANOD
OI43NNN JIFI3NNN

3
16
SH31S193d
d0193A
YyVYvY A

0Z6 26
ATZZIMS 31¥IITd3y
A A A A

876
N1V JOL03A 3AIM-9)
7'y
A
926
SHILSIOFY MSYIN FLI-IM

y 3 [3

806
1INN
dv1vos

A

006

300330 NOILONYLSNI

U.S. Patent Sep. 13, 2016 Sheet 13 of 19 US 9,442,723 B2

L1 BRANCH PREDICTION UNIT L1 INSTRUCTION CACHE UNIT -
1020 _ 1024
L2 BRANCH PREDICTION UNIT "
¢ 1022 CrioNU INSTRUCTION TLB UNIT .
1026
INSTRUCTION FETCH AND
PREDECODE UNIT
1028
FRONT END UNIT v
1005 INSTRUCTION QUEUE UNIT
— 1030
DECODE UNIT 1032
DE FROM COMPLEX SIMPLE SIMPLE SIMPLE
pCOUNIT 0 DECODER DECODER DECODER DECODER
1042 UNIT UNIT UNIT UNIT
T 1034 1036 1038 1040
LOOP STREAM DETECTOR UNIT
1044 v
EXECUTION ENGINE UNIT v
1010 RENAME / ALLOCATOR UNIT y
106 IND
v v LEVEL
RETIREMENT UNIT UNIFIED SCHEDULER UNIT TLB UNIT
1074 1058 1046
REORDER > I
o REORDER - PHYSICAL REGISTERFILESUNIT 1076
1078 VECTOR WRITE MASK SCALAR
REGISTERS REGISTERS REGISTERS
UNIT UNIT UNIT
4 R 1077A 10778 1077C
=
v v A 4 %
A A A >0
MIXED MIXED o=
SCALAR SCALAR LOAD STORE STORE s'\é'Z\(LEER =
vERRR Ve T ADL%%SS oN AND =
OKIT URIT 1611 fose i || VEGIOR
1062 1064 ; 1072
EXECUTION UNITS
1080
A4 Y P
DATATLBUNIT 1052 L2 CACHE UNIT |«
FIG. 10 L1 DATA CACHE UNIT < 1048 «— >
. 1054 13 CACHE%I&IOD BEYOND

U.S. Patent Sep. 13,2016 Sheet 14 of 19 US 9,442,723 B2

1100 \ ___________ _71115
|

|
|
L 110
| 1
| 1
| 1
. PROCESSOR [~~~""""77 i
I___: :
l-— |
|
1195 !
S i
DISPLAY GMCH MEMORY
1145 1120 1140
ICH
1150
EXTERNAL
GRAPHICS PERIPHERAL
DEVICE 1170
1160

FIG. 11

US 9,442,723 B2

Sheet 15 of 19

Sep. 13, 2016

U.S. Patent

geel | viva (e ogel
ANV 309 | s3omnaa | 3snow
0cel H
5744} 5774 {4
o/ oliany $301A30 O/l 390149 Sng
9121 %.w
0621 4 262, ™ 41 gecl
962} SOIHAYHO
A A
ps2l T & 252l "™ ¢
o | dd dd [* d-d dd| @
AT .
NwN_\ wwN_. wwN— wNNr @NN— NNN_\
S Y
AHOW3N NI NI AHMOWAN
¥0SS3I004d H0SSI00Ud
Y~ ozl

US 9,442,723 B2

Sheet 16 of 19

Sep. 13, 2016

U.S. Patent

12954
AHOWN3IN

GlLEl
O ADY931
06vF —~] 4
96¥1
dd[™~—86¥l 13SdIHO pepL ™ dd
y A
vl T s ™ v
oapr | dd d-d Pldd| |dd| o
)) owwv b)
a8vl 98l 88y 8.yl 9.yl 2l
8 §
— 0 10
d0SS3004d d0SS3004d

cevl
AHONIN

S~ 00¢1

US 9,442,723 B2

Sheet 17 of 19

Sep. 13, 2016

U.S. Patent

A|¢v§
N - - S)LINN e
172" rA%d) 0Ehl - !
Y3 TI0HLNOD ! e} |
LINN AV1dSIA 1INN VNG LINN WYdS ANOWAN ! _
qalveoain | Ji_ HOSSFOOWOTM |
| |
| K42 !
ST A d0SS300Nd 0IaNY
1
(S)LINN _,nunnnnnnununnunnu_
ddTI041NOD 7077 (S)LINN LOINNOQYALNI _ yeyl !
snd I ¥0SSIO0Hd IOVAI
.
— IIIIIIIIIIIIIIIIIIIIIIIIIIIII — — IIIIIIIIIIIIIIIII _
] I I R |
! “ /_ 8071 I
! 90T _ | SOIHdVYHO Q3LYHO3INI !
! (S)LINN FHOYO A3¥VHS “ b
- A mm 4!
Fom=mmmn —— (S)408$3004d
oI | w02l 9
11 (SIIND (S).LINN
0Lzl Ly JHOVO 1+, *°*°® IHOVD
LN | e Voo v/ 00v1
IN3OV WILSAS H
= 3400 dIHO ¥ NO WALSAS
ST
¥0SS300¥d NOILYOITddY

US 9,442,723 B2

Sheet 18 of 19

Sep. 13, 2016

U.S. Patent

i N CCIIIIICIIICIIIICIIICICIIIIIIICITTTTTTTTS !
I TIGT _H_ —— K !
g L deows o m
o | YITIOUINOD 1! 9051 (S)LINN IHOVO A3YVHS |
91GT I AYOWAW S mmemesmes——r——— !
(S)LINN | Q3LYHOIINI 1T oo - _
YITOYINOD | =-----------="1 | NpOSF 1 | VY0ST |
sng 1 (SN (S)LINN el !
5t L1 3HOVO 1 e e e 3HOVO 0901 |
LINN Thmr ! VZ05T 350ddNd !

| |
IN3IOV INTLSAS | 1409 ! 3400 ID3dS m

/ 0061 ¥0SS300Hd

US 9,442,723 B2

Sheet 19 of 19

Sep. 13, 2016

U.S. Patent

¢091

91 "Old

v091
d31dNOD 98X

9091
3000 AYVNIF 98X

¢lol
d3.143ANOD
NOILONYLSN

JOVNONVT T1IAITHOIH

8091
4311dNOD
13S NOILONYLSNI
AAILYNYSLTY

_
o9l
3003 AYVNIF
13S NOILONYLSNI
JAILYNYALTY

7191
3409 13S NOILONYLSNI
98X NV LNOHLIM HOSS3004d

J4VML40S
v J4VMJYEVYH
919t
3400 13S NOILONYLSNI
98X ANO 1SV3T
1V HLIM 40SS3004d

US 9,442,723 B2

1
METHOD AND APPARATUS FOR INTEGRAL
IMAGE COMPUTATION INSTRUCTIONS

FIELD ON INVENTION

The field of invention pertains to computer processing
systems, and, more specifically, to integral image computa-
tion instructions.

BACKGROUND

FIG. 1 shows a high level diagram of a processing core
100 implemented with logic circuitry on a semiconductor
chip. The processing core includes a pipeline 101. The
pipeline consists of multiple stages each designed to perform
a specific step in the multi-step process needed to fully
execute a program code instruction. These typically include
at least: 1) instruction fetch and decode; 2) data fetch; 3)
execution; 4) write-back. The execution stage performs a
specific operation identified by an instruction that was
fetched and decoded in prior stage(s) (e.g., in step 1) above)
upon data identified by the same instruction and fetched in
another prior stage (e.g., step 2) above). The data that is
operated upon is typically fetched from (general purpose)
register storage space 102. New data that is created at the
completion of the operation is also typically “written back”
to register storage space (e.g., at stage 4) above).

The logic circuitry associated with the execution stage is
typically composed of multiple “execution units” or “func-
tional units” 103_1 to 103_N that are each designed to
perform its own unique subset of operations (e.g., a first
functional unit performs integer math operations, a second
functional unit performs floating point instructions, a third
functional unit performs load/store operations from/to
cache/memory, etc.). The collection of all operations per-
formed by all the functional units corresponds to the
“instruction set” supported by the processing core 100.

Two types of processor architectures are widely recog-
nized in the field of computer science: “scalar” and “vector”.
A scalar processor is designed to execute instructions that
perform operations on a single set of data, whereas, a vector
processor is designed to execute instructions that perform
operations on multiple sets of data. FIGS. 2A and 2B present
a comparative example that demonstrates the basic differ-
ence between a scalar processor and a vector processor.

FIG. 2A shows an example of a scalar AND instruction in
which a single operand set, A and B, are ANDed together to
produce a singular (or “scalar”) result C (i.e., AB=C). By
contrast, FIG. 2B shows an example of a vector AND
instruction in which two operand sets, A/B and D/E, are
respectively ANDed to produce a vector result C, F (i.e.,
A.AND.B=C and D.AND.E=F). As a matter of terminology,
a “vector” is a data element having multiple “elements”. For
example, a vector V=Q, R, S, T, U has five different
elements: Q, R, S, T and U. The “size” of the exemplary
vector V is five (because it has five elements).

FIG. 1 also shows the presence of vector register space
107 that is different than general purpose register space 102.
Specifically, general purpose register space 102 is nominally
used to store scalar values. As such, when, any of execution
units perform scalar operations they nominally use operands
called from (and write results back to) general purpose
register storage space 102. By contrast, when any of the
execution units perform vector operations they nominally
use operands called from (and write results back to) vector

10

15

20

25

30

35

40

45

50

55

60

65

2

register space 107. Different regions of memory may like-
wise be allocated for the storage of scalar values and vector
values.

Note also the presence of masking logic 104_1 to 104_N
and 105_1 to 105_N at the respective inputs to and outputs
from the functional units 103_1 to 103_N. In various imple-
mentations, for vector operations, only one of these layers is
actually implemented—although that is not a strict require-
ment (although not depicted in FIG. 1, conceivably, execu-
tion units that only perform scalar and not vector operations
need not have any masking layer). For any vector instruction
that employs masking, input masking logic 104_1 to 104_N
and/or output masking logic 105_1 to 105_N may be used to
control which elements are effectively operated on for the
vector instruction. Here, a mask vector is read from a mask
register space 106 (e.g., along with input operand vectors
read from vector register storage space 107) and is presented
to at least one of the masking logic 104, 105 layers.

Over the course of executing vector program code each
vector instruction need not require a full data word. For
example, the input vectors for some instructions may only be
8 elements, the input vectors for other instructions may be
16 elements, the input vectors for other instructions may be
32 elements, etc. Masking layers 104/105 are therefore used
to identify a set of elements of a full vector data word that
apply for a particular instruction so as to effect different
vector sizes across instructions. Typically, for each vector
instruction, a specific mask pattern kept in mask register
space 106 is called out by the instruction, fetched from mask
register space and provided to either or both of the mask
layers 104/105 to “enable” the correct set of elements for the
particular vector operation.

FIG. 3a shows an “integral image” calculation. An inte-
gral image calculation sums all pixel values over an image
surface area 301 (e.g., as defined by the rectangular area
having corner coordinates (0,0) and (x',y"). The summing of
the pixel values over the image surface area 301 essentially
corresponds to the calculation of a discrete integral where
the pixel values correspond to the discrete function being
integrated over the surface area.

One technique is to sum all values along a first dimension
of the area 301 for each discrete location along the second
dimension. For example, as observed in FIG. 3a, all pixel
values along the x axis within the surface area 301 are
summed 302 for a particular location on the y axis within the
surface area 301. Performing this operation for each y axis
location within the surface area 301 yields a summation
value for each y axis location. These summation values are
then summed (essentially over the second (y) axis) to
produce a final summation value for the entire surface area
301.

A problem is the efficiency at which an integral image is
determined—particularly when multiple surface areas with
overlapping pixel values are calculated. Presently scalar as
opposed to vector sequences are utilized. FIG. 35 shows an
example of a scalar instruction execution sequence used to
calculate summations for different surface area widths. For
example, resultant 311 corresponds to a surface area width
of two, while resultant 312 corresponds to a surface area
width of four. Here, the strictly serial and scalar nature of the
ADD operations results in three machine cycles being
needed to calculate summations for only four different
widths. Said another way, as observed in FIG. 3b, a next
advancement in width summation needs to wait for previous
addition(s) over the smaller width(s).

In order to deal with the inefficiencies associated with the
calculation of an image integral, alternative approaches have

US 9,442,723 B2

3

used program code sequences that employ algorithms that
“approximate” the actual calculation. Approximations can
be insufficient when accuracy is desired.

FIGURES

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements
and in which:

FIG. 1 shows an instruction execution pipeline;

FIGS. 2A, 2B pertain to vector processing;

FIGS. 3A, 3B pertain to integral image computation;

FIG. 4 shows operations of two instructions for integral
image computation;

FIG. 5A shows a functional unit logic design for imple-
menting the instructions of FIG. 4;

FIG. 5B shows a flow diagram for the instructions of FIG.
4;

FIG. 5¢ shows respective flow diagrams for two different
instructions.

FIG. 6A is a block diagram illustrating a generic vector
friendly instruction format and class A instruction templates
thereof according to embodiments of the invention;

FIG. 6B is a block diagram illustrating the generic vector
friendly instruction format and class B instruction templates
thereof according to embodiments of the invention;

FIG. 7A-C is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention.

FIG. 8 is a block diagram of a register architecture
according to one embodiment of the invention.

FIG. 9A is a block diagram of a single CPU core, along
with its connection to the on-die interconnect network and
with its local subset of the level 2 (I.2) cache, according to
embodiments of the invention.

FIG. 9B is an exploded view of part of the CPU core in
FIG. 9A according to embodiments of the invention.

FIG. 10 is a block diagram illustrating an exemplary
out-of-order architecture according to embodiments of the
invention.

FIG. 11 is a block diagram of a system in accordance with
one embodiment of the invention.

FIG. 12 is a block diagram of a second system in
accordance with an embodiment of the invention.

FIG. 13 is a block diagram of a third system in accordance
with an embodiment of the invention.

FIG. 14 is a block diagram of a SoC in accordance with
an embodiment of the invention.

FIG. 15 is a block diagram of a single core processor and
a multicore processor with integrated memory controller and
graphics according to embodiments of the invention.

FIG. 16 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.

DETAILED DESCRIPTION

FIG. 4 shows a programmatic flow for two new instruc-
tions 401, 402 that uses a vector approach to improve upon
the inefficiency of relying on strictly serial, scalar ADD
instructions. As observed in FIG. 4, both instructions 401,
402 perform parallel ADD operations on certain input vector
elements and pass through certain input vector elements.

10

15

20

25

30

35

40

45

50

55

60

65

4

The combination of which vector elements are added and
which vector elements are passed through is different as
between the two instructions.

More specifically, the first instruction 401 adds every
other element to its rightmost neighbor, and passes through
each such rightmost neighbor. That is elements 410, 411 of
input vector 409 are added to their respective rightmost
neighbors 412, 413 to produce resultant elements 414, 415
and the rightmost neighbors 412, 413 are also passed
through to the resultant 416 to create a resultant having
summation terms 414, 415 interleaved with pass through
terms 412, 413. By contrast, the second instruction 402 adds
the same (highest ordered) input element 414 from the right
hand (lowest ordered) set 417 of its input vector 416
elements to each element of the left hand (highest ordered)
set 419 of input vector elements, and, passes through the
right hand set 417 of input elements.

As such, as observed in FIG. 4, the resultant 420 of the
second instruction 402 includes summation terms on its left
hand side 421 but pass through terms on its right hand side
422. The resultant 420 of the two instructions, where the
second instruction 402 operates on the resultant of the first
instruction 401, produces summations (e.g., along a same
axis such as the x axis) for different width image areas
oriented (for the particular embodiment discussed above)
with increasing image size from right to left. Those or
ordinary skill will understand that left v. right orientation is
a matter of designer choice and can be readily reversed in
alternative embodiments.

Thus, comparing the instruction sequence of FIG. 36 with
the instruction sequence of FIG. 4, note that one entire
machine cycle has been eliminated from the calculation.

FIG. 5a shows a logic design for a functional unit that can
implement both of the instructions discussed above with
respect to FIG. 4. As observed in FIG. 5a, elements of an
input vector 501 are routed to adder multiplexer bank 502
and to pass through multiplexer bank 503. Output nodes of
the adder multiplexer bank 502 are passed to input nodes of
an adder bank 504. The control inputs of the pass through
multiplexer bank 503 determine whether the corresponding
element for the resultant vector 505 is to be a pass through
term from the input vector 501 or an adder term from the
adder bank 504. The control inputs of the adder multiplexer
bank 502 determine which input vector elements are added
for a particular output vector 505 element location.

The adders of the adder bank 504 add the input terms
presented to them and forward the corresponding summation
terms to the pass through multiplexer bank 503. Here,
microcode stored in a ROM 506, for example, may provide
the various multiplexers with the appropriate control inputs
for the particular instruction to be performed. The two
instructions may be specified with different opcodes, or, with
same opcodes having different immediate operands that
dictate which specific instruction is to be performed. If
micro-code is not be used, the appropriate control signals
could be generated, for example, hardwired decoder cir-
cuitry that decodes the opcode/immediate operand into the
proper multiplexer control input values. Note that input
vector block 501 and output vector block 505 may corre-
spond to register space of the vector registers associated
with (e.g., coupled to) the instruction execution pipeline, or,
specific registers within an instruction execution pipeline.

Note that, more generally, the adder and pass through
multiplexer banks can be viewed as one type of embodi-
ment, respectively, for adder selection circuitry and pass
through selection circuitry.

US 9,442,723 B2

5

The specific wiring routes observed in FIG. 5a are, for
illustrative ease, “lined up” with the specific operations
observed in FIG. 4. Again, those or ordinary skill will be
able to orient and/or pattern the results differently, and/or,
orient and/or pattern the internal operations differently. FIG.
5b shows a more generic functional unit design that is
capable of adding, for any adder, any two input vector
elements, and, passing through any input vector element.

FIG. 5¢ shows respective flow diagrams 550, 560 for the
two different instructions. For the first instruction 550, input
vector elements chosen for addition and input vector ele-
ments chosen for pass through are selected in alternative
fashion 551. The input vector elements chosen for addition
are added to a neighboring vector element that was also
chosen for pass through 552. The resultant is presented as
summation terms from the addition interleaved with pass
through terms in an alternating fashion. For the second
instruction 560, an input element from a first side of the
input vector is chosen for addition to (e.g., all) the input
elements on the other side of the input vector 561. The
elements of the first side are passed through to the resultant
562 and the summation terms from the addition involving
terms of the other side are passed to the resultant 563.

Note that instruction sequences discussed above can be
implemented on a machine readable media as program code
for execution by a computer having an instruction execution
pipeline that executes the instructions. The instruction
sequence of the program code can be generated by a
compiler designed to produce object code from, eg., a
higher level program flow description.

Generic Vector Friendly Instruction Format

Embodiments of the instruction(s) detailed above are
embodied may be embodied in a “generic vector friendly
instruction format” which is detailed below. In other
embodiments, such a format is not utilized and another
instruction format is used, however, the description below of
the writemask registers, various data transformations
(swizzle, broadcast, etc.), addressing, etc. is generally appli-
cable to the description of the embodiments of the instruc-
tion(s) above. Additionally, exemplary systems, architec-
tures, and pipelines are detailed below. Embodiments of the
instruction(s) above may be executed on such systems,
architectures, and pipelines, but are not limited to those
detailed.

A vector friendly instruction format is an instruction
format that is suited for vector instructions (e.g., there are
certain fields specific to vector operations). While embodi-
ments are described in which both vector and scalar opera-
tions are supported through the vector friendly instruction
format, alternative embodiments use only vector operations
the vector friendly instruction format.

Exemplary Generic Vector Friendly Instruction Format—
FIG. 6A-B

FIGS. 6A-B are block diagrams illustrating a generic
vector friendly instruction format and instruction templates
thereof according to embodiments of the invention. FIG. 6A
is a block diagram illustrating a generic vector friendly
instruction format and class A instruction templates thereof
according to embodiments of the invention; while FIG. 6B
is a block diagram illustrating the generic vector friendly
instruction format and class B instruction templates thereof
according to embodiments of the invention. Specifically, a
generic vector friendly instruction format 600 for which are
defined class A and class B instruction templates, both of
which include no memory access 605 instruction templates

20

25

30

35

40

45

50

55

60

65

6

and memory access 620 instruction templates. The term
generic in the context of the vector friendly instruction
format refers to the instruction format not being tied to any
specific instruction set. While embodiments will be
described in which instructions in the vector friendly
instruction format operate on vectors that are sourced from
either registers (no memory access 605 instruction tem-
plates) or registers/memory (memory access 620 instruction
templates), alternative embodiments of the invention may
support only one of these. Also, while embodiments of the
invention will be described in which there are load and store
instructions in the vector instruction format, alternative
embodiments instead or additionally have instructions in a
different instruction format that move vectors into and out of
registers (e.g., from memory into registers, from registers
into memory, between registers). Further, while embodi-
ments of the invention will be described that support two
classes of instruction templates, alternative embodiments
may support only one of these or more than two.

While embodiments of the invention will be described in
which the vector friendly instruction format supports the
following: a 64 byte vector operand length (or size) with 32
bit (4 byte) or 64 bit (8 byte) data element widths (or sizes)
(and thus, a 64 byte vector consists of either 16 doubleword-
size elements or alternatively, 8 quadword-size elements); a
64 byte vector operand length (or size) with 16 bit (2 byte)
or 8 bit (1 byte) data element widths (or sizes); a 32 byte
vector operand length (or size) with 32 bit (4 byte), 64 bit (8
byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths
(or sizes); and a 16 byte vector operand length (or size) with
32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1
byte) data element widths (or sizes); alternative embodi-
ments may support more, less and/or different vector oper-
and sizes (e.g., 656 byte vector operands) with more, less, or
different data element widths (e.g., 128 bit (16 byte) data
element widths).

The class A instruction templates in FIG. 6A include: 1)
within the no memory access 605 instruction templates there
is shown a no memory access, full round control type
operation 610 instruction template and a no memory access,
data transform type operation 615 instruction template; and
2) within the memory access 620 instruction templates there
is shown a memory access, temporal 625 instruction tem-
plate and a memory access, non-temporal 630 instruction
template. The class B instruction templates in FIG. 6B
include: 1) within the no memory access 605 instruction
templates there is shown a no memory access, write mask
control, partial round control type operation 612 instruction
template and a no memory access, write mask control, vsize
type operation 617 instruction template; and 2) within the
memory access 620 instruction templates there is shown a
memory access, write mask control 627 instruction template.

Format

The generic vector friendly instruction format 600
includes the following fields listed below in the order
illustrated in FIGS. 6A-B. In conjunction with the discus-
sions above, in an embodiment, referring to the format
details provided below in FIGS. 6A-B and 7A-C, either a
non memory access instruction type 605 or a memory access
instruction type 620 may be utilized. Addresses for the input
vector operand and destination may be identified in register
address field 644 described below.

Format field 640—a specific value (an instruction format
identifier value) in this field uniquely identifies the vector
friendly instruction format, and thus occurrences of instruc-
tions in the vector friendly instruction format in instruction
streams. Thus, the content of the format field 640 distinguish

US 9,442,723 B2

7

occurrences of instructions in the first instruction format
from occurrences of instructions in other instruction for-
mats, thereby allowing for the introduction of the vector
friendly instruction format into an instruction set that has
other instruction formats. As such, this field is optional in the
sense that it is not needed for an instruction set that has only
the generic vector friendly instruction format.

Base operation field 642—its content distinguishes dif-
ferent base operations. As described later herein, the base
operation field 642 may include and/or be part of an opcode
field.

Register index field 644—its content, directly or through
address generation, specifies the locations of the source and
destination operands, be they in registers or in memory.
These include a sufficient number of bits to select N registers
from a PxQ (e.g. 32x1012) register file. While in one
embodiment N may be up to three sources and one desti-
nation register, alternative embodiments may support more
or less sources and destination registers (e.g., may support
up to two sources where one of these sources also acts as the
destination, may support up to three sources where one of
these sources also acts as the destination, may support up to
two sources and one destination). While in one embodiment
P=32, alternative embodiments may support more or less
registers (e.g., 16). While in one embodiment Q=1012 bits,
alternative embodiments may support more or less bits (e.g.,
128, 1024).

Modifier field 646—its content distinguishes occurrences
of instructions in the generic vector instruction format that
specify memory access from those that do not; that is,
between no memory access 605 instruction templates and
memory access 620 instruction templates. Memory access
operations read and/or write to the memory hierarchy (in
some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations
are registers). While in one embodiment this field also
selects between three different ways to perform memory
address calculations, alternative embodiments may support
more, less, or different ways to perform memory address
calculations.

Augmentation operation field 650—its content distin-
guishes which one of a variety of different operations to be
performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this
field is divided into a class field 668, an alpha field 652, and
a beta field 654. The augmentation operation field allows
common groups of operations to be performed in a single
instruction rather than 2, 3 or 4 instructions. Below are some
examples of instructions (the nomenclature of which are
described in more detail later herein) that use the augmen-
tation field 650 to reduce the number of required instruc-
tions.

Instructions Sequences according

Prior Instruction Sequences to on Embodiment of the Invention

vaddps ymmO, ymml, ymm?2
vpshufd ymm?2, ymm?2, 0x55
vaddps ymmO, ymml, ymm?2
vpmovsxbd ymm?2, [rax]
vevtdq2ps ymm?2, ymm?2
vaddps ymmO, ymml, ymm?2
vpmovsxbd ymm3, [rax]
vevtdg2ps ymm3, ymm3
vaddps ymm4, ymm?2, ymm3

vaddps zmmO, zmm1, zmm?2
vaddps zmm0, zmm1, zmm?2 {bbbb}

vaddps zmm0, zmm1, [rax]{sint8}

vaddps zmm1 {k5}, zmm?2,
[rax]{sint8}

10

15

20

25

30

40

45

55

65

8

-continued

Instructions Sequences according

Prior Instruction Sequences to on Embodiment of the Invention

vblendvps ymm1, ymm5, ymml,
ymm4

vmaskmovps ymm1, ymm?7, [rbx]
vbroadcastss ymm0, [rax]

vaddps ymm2, ymmoO, ymm1
vblendvps ymm?2, ymm?2, ymml,
ymm?7

vmovaps zmml {k7}, [rbx]
vaddps zmm2{k7}{z}, zmml,
[rax]{1 to N}

Where [rax]| is the base pointer to be used for address
generation, and where { } indicates a conversion operation
specified by the data manipulation filed (described in more
detail later here).

Scale field 660—its content allows for the scaling of the
index field’s content for memory address generation (e.g.,
for address generation that uses 2°“““*index+base).

Displacement Field 662A—its content is used as part of
memory address generation (e.g., for address generation that
uses 2°°“¢*index+base+displacement).

Displacement Factor Field 662B (note that the juxtapo-
sition of displacement field 662 A directly over displacement
factor field 662B indicates one or the other is used)—its
content is used as part of address generation; it specifies a
displacement factor that is to be scaled by the size of a
memory access (N)—where N is the number of bytes in the
memory access (e.g., for address generation that uses
2selexindex+base+scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor
field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 674 (described later herein) and the data
manipulation field 654C as described later herein. The
displacement field 662A and the displacement factor field
6628 are optional in the sense that they are not used for the
no memory access 605 instruction templates and/or different
embodiments may implement only one or none of the two.

Data element width field 664—its content distinguishes
which one of a number of data element widths is to be used
(in some embodiments for all instructions; in other embodi-
ments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
supported using some aspect of the opcodes.

Write mask field 670—its content controls, on a per data
element position basis, whether that data element position in
the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction
templates support merging-writemasking, while class B
instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of
elements in the destination to be protected from updates
during the execution of any operation (specified by the base
operation and the augmentation operation); in other one
embodiment, preserving the old value of each element of the
destination where the corresponding mask bit has a 0. In
contrast, when zeroing vector masks allow any set of ele-
ments in the destination to be zeroed during the execution of
any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to
control the vector length of the operation being performed
(that is, the span of elements being modified, from the first

US 9,442,723 B2

9

to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
670 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. Also, this masking can be
used for fault suppression (i.e., by masking the destination’s
data element positions to prevent receipt of the result of any
operation that may/will cause a fault—e.g., assume that a
vector in memory crosses a page boundary and that the first
page but not the second page would cause a page fault, the
page fault can be ignored if all data element of the vector that
lie on the first page are masked by the write mask). Further,
write masks allow for “vectorizing loops” that contain
certain types of conditional statements. While embodiments
of the invention are described in which the write mask field’s
670 content selects one of a number of write mask registers
that contains the write mask to be used (and thus the write
mask field’s 670 content indirectly identifies that masking to
be performed), alternative embodiments instead or addi-
tional allow the mask write field’s 670 content to directly
specify the masking to be performed. Further, zeroing allows
for performance improvements when: 1) register renaming
is used on instructions whose destination operand is not also
a source (also call non-ternary instructions) because during
the register renaming pipeline stage the destination is no
longer an implicit source (no data elements from the current
destination register need be copied to the renamed destina-
tion register or somehow carried along with the operation
because any data element that is not the result of operation
(any masked data element) will be zeroed); and 2) during the
write back stage because zeros are being written.

Immediate field 672—its content allows for the specifi-
cation of an immediate. This field is optional in the sense
that is it not present in an implementation of the generic
vector friendly format that does not support immediate and
it is not present in instructions that do not use an immediate.

Instruction Template Class Selection

Class field 668—its content distinguishes between differ-
ent classes of instructions. With reference to FIGS. 2A-B,
the contents of this field select between class A and class B
instructions. In FIGS. 6A-B, rounded corner squares are
used to indicate a specific value is present in a field (e.g.,
class A 668A and class B 668B for the class field 668
respectively in FIGS. 6A-B).

No-Memory Access Instruction Templates of Class A

In the case of the non-memory access 605 instruction
templates of class A, the alpha field 652 is interpreted as an
RS field 652A, whose content distinguishes which one of the
different augmentation operation types are to be performed
(e.g., round 652A.1 and data transform 652A.2 are respec-
tively specified for the no memory access, round type
operation 610 and the no memory access, data transform
type operation 615 instruction templates), while the beta
field 654 distinguishes which of the operations of the
specified type is to be performed. In FIG. 6, rounded corner
blocks are used to indicate a specific value is present (e.g.,
no memory access 646A in the modifier field 646; round
652A.1 and data transform 652A.2 for alpha field 652/rs
field 652A). In the no memory access 605 instruction
templates, the scale field 660, the displacement field 662A,
and the displacement scale filed 662B are not present.

No-Memory Access Instruction Templates—Full Round
Control Type Operation

In the no memory access full round control type operation
610 instruction template, the beta field 654 is interpreted as
a round control field 654 A, whose content(s) provide static
rounding. While in the described embodiments of the inven-
tion the round control field 654A includes a suppress all

10

15

20

25

30

35

40

45

50

55

60

65

10

floating point exceptions (SAE) field 656 and a round
operation control field 658, alternative embodiments may
support may encode both these concepts into the same field
or only have one or the other of these concepts/fields (e.g.,
may have only the round operation control field 658).

SAE field 656—its content distinguishes whether or not to
disable the exception event reporting; when the SAE field’s
656 content indicates suppression is enabled, a given
instruction does not report any kind of floating-point excep-
tion flag and does not raise any floating point exception
handler.

Round operation control field 658—its content distin-
guishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 658 allows for the changing of the rounding mode on
a per instruction basis, and thus is particularly useful when
this is required. In one embodiment of the invention where
a processor includes a control register for specifying round-
ing modes, the round operation control field’s 650 content
overrides that register value (Being able to choose the
rounding mode without having to perform a save-modify-
restore on such a control register is advantageous).

No Memory Access Instruction Templates—Data Trans-
form Type Operation

In the no memory access data transform type operation
615 instruction template, the beta field 654 is interpreted as
a data transform field 654B, whose content distinguishes
which one of a number of data transforms is to be performed
(e.g., no data transform, swizzle, broadcast).

Memory Access Instruction Templates of Class A

In the case of a memory access 620 instruction template
of class A, the alpha field 652 is interpreted as an eviction
hint field 652B, whose content distinguishes which one of
the eviction hints is to be used (in FIG. 6 A, temporal 652B.1
and non-temporal 652B.2 are respectively specified for the
memory access, temporal 625 instruction template and the
memory access, non-temporal 630 instruction template),
while the beta field 654 is interpreted as a data manipulation
field 654C, whose content distinguishes which one of a
number of data manipulation operations (also known as
primitives) is to be performed (e.g., no manipulation; broad-
cast; up conversion of a source; and down conversion of a
destination). The memory access 620 instruction templates
include the scale field 660, and optionally the displacement
field 662A or the displacement scale field 662B.

Vector Memory Instructions perform vector loads from
and vector stores to memory, with conversion support. As
with regular vector instructions, vector memory instructions
transfer data from/to memory in a data element-wise fash-
ion, with the elements that are actually transferred dictated
by the contents of the vector mask that is selected as the
write mask. In FIG. 6A, rounded corner squares are used to
indicate a specific value is present in a field (e.g., memory
access 646B for the modifier field 646; temporal 652B.1 and
non-temporal 652B.2 for the alpha field 652/eviction hint
field 652B)

Memory Access Instruction Templates—Temporal

Temporal data is data likely to be reused soon enough to
benefit from caching. This is, however, a hint, and different
processors may implement it in different ways, including
ignoring the hint entirely.

Memory Access Instruction Templates—Non-Temporal

Non-temporal data is data unlikely to be reused soon
enough to benefit from caching in the 1st-level cache and
should be given priority for eviction. This is, however, a

US 9,442,723 B2

11

hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

In the case of the instruction templates of class B, the
alpha field 652 is interpreted as a write mask control (Z) field
652C, whose content distinguishes whether the write mask-
ing controlled by the write mask field 670 should be a
merging or a zeroing.

No-Memory Access Instruction Templates of Class B

In the case of the non-memory access 605 instruction
templates of class B, part of the beta field 654 is interpreted
as an RL field 657A, whose content distinguishes which one
of the different augmentation operation types are to be
performed (e.g., round 657A.1 and vector length (VSIZE)
657A.2 are respectively specified for the no memory access,
write mask control, partial round control type operation 612
instruction template and the no memory access, write mask
control, VSIZE type operation 617 instruction template),
while the rest of the beta field 654 distinguishes which of the
operations of the specified type is to be performed. In FIG.
6, rounded corner blocks are used to indicate a specific value
is present (e.g., no memory access 646 A in the modifier field
646; round 657A.1 and VSIZE 657A.2 for the RL field
657A). In the no memory access 605 instruction templates,
the scale field 660, the displacement field 662A, and the
displacement scale filed 662B are not present.

No-Memory Access Instruction Templates

Write Mask Control, Partial Round Control Type
Operation

In the no memory access, write mask control, partial
round control type operation 610 instruction template, the
rest of the beta field 654 is interpreted as a round operation
field 659 A and exception event reporting is disabled (a given
instruction does not report any kind of floating-point excep-
tion flag and does not raise any floating point exception
handler).

Round operation control field 659 A—just as round opera-
tion control field 658, its content distinguishes which one of
a group of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest).
Thus, the round operation control field 659A allows for the
changing of the rounding mode on a per instruction basis,
and thus is particularly useful when this is required. In one
embodiment of the invention where a processor includes a
control register for specifying rounding modes, the round
operation control field’s 650 content overrides that register
value (Being able to choose the rounding mode without
having to perform a save-modify-restore on such a control
register is advantageous).

No Memory Access Instruction Templates

Write Mask Control, VSIZE Type Operation

In the no memory access, write mask control, VSIZE type
operation 617 instruction template, the rest of the beta field
654 is interpreted as a vector length field 659B, whose
content distinguishes which one of a number of data vector
length is to be performed on (e.g., 128, 856, or 1012 byte).

Memory Access Instruction Templates of Class B

In the case of a memory access 620 instruction template
of class A, part of the beta field 654 is interpreted as a
broadcast field 657B, whose content distinguishes whether
or not the broadcast type data manipulation operation is to

20

30

40

45

55

12

be performed, while the rest of the beta field 654 is inter-
preted the vector length field 659B. The memory access 620
instruction templates include the scale field 660, and option-
ally the displacement field 662A or the displacement scale
field 662B.

Additional Comments Regarding Fields

With regard to the generic vector friendly instruction
format 600, a full opcode field 674 is shown including the
format field 640, the base operation field 642, and the data
element width field 664. While one embodiment is shown
where the full opcode field 674 includes all of these fields,
the full opcode field 674 includes less than all of these fields
in embodiments that do not support all of them. The full
opcode field 674 provides the operation code.

The augmentation operation field 650, the data element
width field 664, and the write mask field 670 allow these
features to be specified on a per instruction basis in the
generic vector friendly instruction format.

The combination of write mask field and data element
width field create typed instructions in that they allow the
mask to be applied based on different data element widths.

The instruction format requires a relatively small number
of'bits because it reuses different fields for different purposes
based on the contents of other fields. For instance, one
perspective is that the modifier field’s content chooses
between the no memory access 605 instructions templates
on FIGS. 6A-B and the memory access 6250 instruction
templates on FIGS. 6 A-B; while the class field 668’s content
chooses within those non-memory access 605 instruction
templates between instruction templates 610/615 of FIG. 6A
and 612/617 of FIG. 6B; and while the class field 668’s
content chooses within those memory access 620 instruction
templates between instruction templates 625/830 of FIGS.
6A and 627 of FIG. 6B. From another perspective, the class
field 668’s content chooses between the class A and class B
instruction templates respectively of FIGS. 6 A and B; while
the modifier field’s content chooses within those class A
instruction templates between instruction templates 605 and
620 of FIG. 6A; and while the modifier field’s content
chooses within those class B instruction templates between
instruction templates 605 and 620 of FIG. 6B. In the case of
the class field’s content indicating a class A instruction
template, the content of the modifier field 646 chooses the
interpretation of the alpha field 652 (between the rs field
652A and the EH field 652B. In a related manner, the
contents of the modifier field 646 and the class field 668
chose whether the alpha field is interpreted as the rs field
652A, the EH field 652B, or the write mask control (Z) field
652C. In the case of the class and modifier fields indicating
a class A no memory access operation, the interpretation of
the augmentation field’s beta field changes based on the rs
field’s content; while in the case of the class and modifier
fields indicating a class B no memory access operation, the
interpretation of the beta field depends on the contents of the
RL field. In the case of the class and modifier fields
indicating a class A memory access operation, the interpre-
tation of the augmentation field’s beta field changes based
on the base operation field’s content; while in the case of the
class and modifier fields indicating a class B memory access
operation, the interpretation of the augmentation field’s beta
field’s broadcast field 657B changes based on the base
operation field’s contents. Thus, the combination of the base
operation field, modifier field and the augmentation opera-
tion field allow for an even wider variety of augmentation
operations to be specified.

The various instruction templates found within class A
and class B are beneficial in different situations. Class A is

US 9,442,723 B2

13

useful when zeroing-writemasking or smaller vector lengths
are desired for performance reasons. For example, zeroing
allows avoiding fake dependences when renaming is used
since we no longer need to artificially merge with the
destination; as another example, vector length control eases
store-load forwarding issues when emulating shorter vector
sizes with the vector mask. Class B is useful when it is
desirable to: 1) allow floating point exceptions (i.e., when
the contents of the SAE field indicate no) while using
rounding-mode controls at the same time; 2) be able to use
upconversion, swizzling, swap, and/or downconversion; 3)
operate on the graphics data type. For instance, upconver-
sion, swizzling, swap, downconversion, and the graphics
data type reduce the number of instructions required when
working with sources in a different format; as another
example, the ability to allow exceptions provides full IEEE
compliance with directed rounding-modes.

Exemplary Specific Vector Friendly Instruction Format

FIG. 7A-C is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention. FIG. 7 FIG. 7A-C shows a
specific vector friendly instruction format 700 that is specific
in the sense that it specifies the location, size, interpretation,
and order of the fields, as well as values for some of those
fields. The specific vector friendly instruction format 700
may be used to extend the x86 instruction set, and thus some
of the fields are similar or the same as those used in the
existing x86 instruction set and extension thereof (e.g.,
AVX). This format remains consistent with the prefix encod-
ing field, real opcode byte field, MOD R/M field, SIB field,
displacement field, and immediate fields of the existing x86
instruction set with extensions. The fields from FIG. 6 into
which the fields from FIG. 7A-C map are illustrated.

It should be understand that although embodiments of the
invention are described with reference to the specific vector
friendly instruction format 700 in the context of the generic
vector friendly instruction format 600 for illustrative pur-
poses, the invention is not limited to the specific vector
friendly instruction format 700 except where claimed. For
example, the generic vector friendly instruction format 600
contemplates a variety of possible sizes for the various
fields, while the specific vector friendly instruction format
700 is shown as having fields of specific sizes. By way of
specific example, while the data element width field 664 is
illustrated as a one bit field in the specific vector friendly
instruction format 700, the invention is not so limited (that
is, the generic vector friendly instruction format 600 con-
templates other sizes of the data element width field 664).

Format—FIG. 7A-C

The generic vector friendly instruction format 600
includes the following fields listed below in the order
illustrated in FIG. 7A-C.

EVEX Prefix (Bytes 0-3)

EVEX Prefix 702—is encoded in a four-byte form.

Format Field 640 (EVEX Byte 0, bits [7:0])—the first
byte (EVEX Byte 0) is the format field 640 and it contains
0x62 (the unique value used for distinguishing the vector
friendly instruction format in one embodiment of the inven-
tion).

The second-fourth bytes (EVEX Bytes 1-3) include a
number of bit fields providing specific capability.

REX field 705 (EVEX Byte 1, bits [7-5])—consists of a
EVEX R bit field (EVEX Byte 1, bit [7]—R), EVEX.X bit
field (EVEX byte 1, bit [6]—X), and 657BEX byte 1,
bit[5]—B). The EVEX.R, EVEX X, and EVEX.B bit fields
provide the same functionality as the corresponding VEX bit
fields, and are encoded using 1s complement form, i.e.

5

10

20

25

30

40

45

50

55

60

65

14
ZMMO is encoded as 1111B, ZMM135 is encoded as 0000B.
Other fields of the instructions encode the lower three bits of
the register indexes as is known in the art (rrr, xxx, and bbb),
so that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEXR, EVEX X, and EVEX.B.

REX' field 710—this is the first part of the REX' field 710
and is the EVEX.R' bit field (EVEX Byte 1, bit [4]—R") that
is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the inven-
tion, this bit, along with others as indicated below, is stored
in bit inverted format to distinguish (in the well-known x86
32-bit mode) from the BOUND instruction, whose real
opcode byte is 62, but does not accept in the MOD RIM field
(described below) the value of 11 in the MOD field; alter-
native embodiments of the invention do not store this and the
other indicated bits below in the inverted format. A value of
1 is used to encode the lower 16 registers. In other words,
R'Rrrr is formed by combining EVEX.R', EVEX R, and the
other RRR from other fields.

Opcode map field 715 (EVEX byte 1, bits [3:0]—
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

Data element width field 664 (EVEX byte 2, bit [7]—
W)—is represented by the notation EVEX.W. EVEX.W is
used to define the granularity (size) of the datatype (either
32-bit data elements or 64-bit data elements).

EVEX.vvvv 720 (EVEX Byte 2, bits [6:3]—vvvv)—the
role of EVEX.vvvv may include the following: 1) EVEX.v-
vvv encodes the first source register operand, specified in
inverted (1s complement) form and is valid for instructions
with 2 or more source operands; 2) EVEX.vvvv encodes the
destination register operand, specified in 1s complement
form for certain vector shifts; or 3) EVEX.vvvv does not
encode any operand, the field is reserved and should contain
1111b. Thus, EVEX.vvvv field 720 encodes the 4 low-order
bits of the first source register specifier stored in inverted (1s
complement) form. Depending on the instruction, an extra
different EVEX bit field is used to extend the specifier size
to 32 registers.

EVEX.U 668 Class field (EVEX byte 2, bit [2]—U)—If
EVEX.0=0, it indicates class A or EVEX.UO; if EVEX . U=1,
it indicates class B or EVEX.U1.

Prefix encoding field 725 (EVEX byte 2, bits [1:0]—
pp)—provides additional bits for the base operation field. In
addition to providing support for the legacy SSE instructions
in the EVEX prefix format, this also has the benefit of
compacting the SIMD prefix (rather than requiring a byte to
express the SIMD prefix, the EVEX prefix requires only 2
bits). In one embodiment, to support legacy SSE instructions
that use a SIMD prefix (66H, F2H, F3H) in both the legacy
format and in the EVEX prefix format, these legacy SIMD
prefixes are encoded into the SIMD prefix encoding field;
and at runtime are expanded into the legacy SIMD prefix
prior to being provided to the decoder’s PLA (so the PLA
can execute both the legacy and EVEX format of these
legacy instructions without modification). Although newer
instructions could use the EVEX prefix encoding field’s
content directly as an opcode extension, certain embodi-
ments expand in a similar fashion for consistency but allow
for different meanings to be specified by these legacy SIMD
prefixes. An alternative embodiment may redesign the PLA
to support the 2 bit SIMD prefix encodings, and thus not
require the expansion.

Alpha field 652 (EVEX byte 3, bit [7]—EH; also known
as EVEX .EH, EVEX.rs, EVEX.RL, EVEX write mask con-

US 9,442,723 B2

15

trol, and EVEX.N; also illustrated with a)—as previously
described, this field is context specific. Additional descrip-
tion is provided later herein.

Beta field 654 (EVEX byte 3, bits [6:4]—SSS, also
known as EVEX.s, ,, EVEXr, ,, EVEX.rrl, EVEX.LLO,
EVEX.LLB; also illustrated with PBpp)—as previously
described, this field is context specific. Additional descrip-
tion is provided later herein.

REX' field 710—this is the remainder of the REX' field
and is the EVEX. V' bit field (EVEX Byte 3, bit [3]—V") that
may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted
format. A value of 1 is used to encode the lower 16 registers.
In other words, V'VVVV is formed by combining EVEX. V',
EVEX.vvwv.

Write mask field 670 (EVEX byte 3, bits [2:0]—kkk)—its
content specifies the index of a register in the write mask
registers as previously described. In one embodiment of the
invention, the specific value EVEX kkk=000 has a special
behavior implying no write mask is used for the particular
instruction (this may be implemented in a variety of ways
including the use of a write mask hardwired to all ones or
hardware that bypasses the masking hardware).

Real Opcode Field 730 (Byte 4)

This is also known as the opcode byte. Part of the opcode
is specified in this field.

MOD RIM Field 740 (Byte 5)

Modifier field 646 (MODR/M.MOD, bits [7-6]— MOD
field 742)—As previously described, the MOD field’s 742
content distinguishes between memory access and non-
memory access operations. This field will be further
described later herein.

MODR/M.reg field 744, bits [5-3]—the role of ModR/
M.reg field can be summarized to two situations: ModR/
M.reg encodes either the destination register operand or a
source register operand, or ModR/M.reg is treated as an
opcode extension and not used to encode any instruction
operand.

MODR/M.r/m field 746, bits [2-0]—The role of ModR/
M.r/m field may include the following: ModR/M.r/m
encodes the instruction operand that references a memory
address, or ModR/M.r/m encodes either the destination
register operand or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6)

Scale field 660 (SIB.SS, bits [7-6]—As previously
described, the scale field’s 660 content is used for memory
address generation. This field will be further described later
herein.

SIB.xxx 754 (bits [5-3] and SIB.bbb 756 (bits [2-0])—the
contents of these fields have been previously referred to with
regard to the register indexes Xxxx and Bbbb.

Displacement Byte(s) (Byte 7 or Bytes 7-10)

Displacement field 662A (Bytes 7-10)>—when MOD field
742 contains 10, bytes 7-10 are the displacement field 662A,
and it works the same as the legacy 32-bit displacement
(disp32) and works at byte granularity.

Displacement factor field 662B (Byte 7)—when MOD
field 742 contains 01, byte 7 is the displacement factor field
662B. The location of this field is that same as that of the
legacy x86 instruction set 8-bit displacement (disp8), which
works at byte granularity. Since disp8 is sign extended, it can
only address between —128 and 127 bytes offsets; in terms
of 64 byte cache lines, disp8 uses 8 bits that can be set to
only four really useful values —128, —64, 0, and 64; since a
greater range is often needed, disp32 is used; however,
disp32 requires 4 bytes. In contrast to disp8 and disp32, the
displacement factor field 662B is a reinterpretation of disp8;

10

15

20

25

30

35

40

45

50

55

60

65

16

when using displacement factor field 662B, the actual dis-
placement is determined by the content of the displacement
factor field multiplied by the size of the memory operand
access (N). This type of displacement is referred to as
disp8*N. This reduces the average instruction length (a
single byte of used for the displacement but with a much
greater range). Such compressed displacement is based on
the assumption that the effective displacement is multiple of
the granularity of the memory access, and hence, the redun-
dant low-order bits of the address offset do not need to be
encoded. In other words, the displacement factor field 662B
substitutes the legacy x86 instruction set 8-bit displacement.
Thus, the displacement factor field 662B is encoded the
same way as an x86 instruction set 8-bit displacement (so no
changes in the ModRM/SIB encoding rules) with the only
exception that disp8 is overloaded to disp8*N. In other
words, there are no changes in the encoding rules or encod-
ing lengths but only in the interpretation of the displacement
value by hardware (which needs to scale the displacement
by the size of the memory operand to obtain a byte-wise
address offset).

Immediate

Immediate field 672 operates as previously described.

Exemplary Register Architecture—FIG. 8

FIG. 8 is a block diagram of a register architecture 800
according to one embodiment of the invention. The register
files and registers of the register architecture are listed
below:

Vector register file 810—in the embodiment illustrated,
there are 32 vector registers that are 812 bits wide; these
registers are referenced as zmmO through zmm31. The lower
order 656 bits of the lower 16 zmm registers are overlaid on
registers ymmO-16. The lower order 128 bits of the lower 16
zmm registers (the lower order 128 bits of the ymm regis-
ters) are overlaid on registers xmmO-15. The specific vector
friendly instruction format 700 operates on these overlaid
register file as illustrated in the below tables.

Adjustable

Vector Length Class Operations ~ Registers
Instruction A (FIG. 6A; 810, 615, zmm registers
Templates that U=0) 625, 630 (the vector

do not include length is 64 byte)
the vector B (FIG. 6B; 812 zmm registers
length U=1) (the vector

fleld 659B length is 64 byte)
Instruction B (FIG. 6B; 817, 627 zmm, ymim, or
Templates that U=1) xmm registers

do include the (the vector
vector length length is 64 byte,
fleld 659B 32 byte, or 16

byte) depending
on the vector
length field 659B

In other words, the vector length field 659B sclects
between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 659B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
700 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher

US 9,442,723 B2

17

order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

Write mask registers 815—in the embodiment illustrated,
there are 8 write mask registers (kO through k7), each 64 bits
in size. As previously described, in one embodiment of the
invention the vector mask register kO cannot be used as a
write mask; when the encoding that would normally indicate
kO is used for a write mask, it selects a hardwired write mask
of OxFFFF, effectively disabling write masking for that
instruction.

Multimedia Extensions Control Status Register
(MXCSR) 820—in the embodiment illustrated, this 32-bit
register provides status and control bits used in floating-
point operations.

General-purpose registers 825—in the embodiment illus-
trated, there are sixteen 64-bit general-purpose registers that
are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by
the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP,
and R8 through R15.

Extended flags (EFLLAGS) register 830—in the embodi-
ment illustrated, this 32 bit register is used to record the
results of many instructions.

Floating Point Control Word (FCW) register 835 and
Floating Point Status Word (FSW) register 840—in the
embodiment illustrated, these registers are used by x87
instruction set extensions to set rounding modes, exception
masks and flags in the case of the FCW, and to keep track
of exceptions in the case of the FSW.

Scalar floating point stack register file (x87 stack) 845 on
which is aliased the MMX packed integer flat register file
850—in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87
instruction set extension; while the MMX registers are used
to perform operations on 64-bit packed integer data, as well
as to hold operands for some operations performed between
the MMX and XMM registers.

Segment registers 855—in the illustrated embodiment,
there are six 16 bit registers use to store data used for
segmented address generation.

RIP register 865—in the illustrated embodiment, this 64
bit register that stores the instruction pointer.

Alternative embodiments of the invention may use wider
or narrower registers. Additionally, alternative embodiments
of'the invention may use more, less, or different register files
and registers.

Exemplary
9A-9B

FIGS. 9A-B illustrate a block diagram of an exemplary
in-order processor architecture. These exemplary embodi-
ments are designed around multiple instantiations of an
in-order CPU core that is augmented with a wide vector
processor (VPU). Cores communicate through a high-band-
width interconnect network with some fixed function logic,
memory [/O interfaces, and other necessary 1/O logic,
depending on the el3t application. For example, an imple-
mentation of this embodiment as a stand-alone GPU would
typically include a PCle bus.

FIG. 9A is a block diagram of a single CPU core, along
with its connection to the on-die interconnect network 902
and with its local subset of the level 2 (L2) cache 904,
according to embodiments of the invention. An instruction
decoder 900 supports the x86 instruction set with an exten-
sion including the specific vector instruction format 700.
While in one embodiment of the invention (to simplify the

in-Order Processor Architecture—FIGS.

10

15

20

25

30

35

40

45

50

55

60

65

18

design) a scalar unit 908 and a vector unit 910 use separate
register sets (respectively, scalar registers 912 and vector
registers 914) and data transferred between them is written
to memory and then read back in from a level 1 (L1) cache
906, alternative embodiments of the invention may use a
different approach (e.g., use a single register set or include
a communication path that allow data to be transferred
between the two register files without being written and read
back).

The L1 cache 906 allows low-latency accesses to cache
memory into the scalar and vector units. Together with
load-op instructions in the vector friendly instruction format,
this means that the L1 cache 906 can be treated somewhat
like an extended register file. This significantly improves the
performance of many algorithms, especially with the evic-
tion hint field 652B.

The local subset of the 1.2 cache 904 is part of a global 1.2
cache that is divided into separate local subsets, one per
CPU core. Each CPU has a direct access path to its own local
subset of the .2 cache 904. Data read by a CPU core is
stored in its L2 cache subset 904 and can be accessed
quickly, in parallel with other CPUs accessing their own
local L2 cache subsets. Data written by a CPU core is stored
in its own L2 cache subset 904 and is flushed from other
subsets, if necessary. The ring network ensures coherency
for shared data.

FIG. 9B is an exploded view of part of the CPU core in
FIG. 9A according to embodiments of the invention. FIG.
9B includes an L1 data cache 906A part of the L1 cache 904,
as well as more detail regarding the vector unit 910 and the
vector registers 914. Specifically, the vector unit 910 is a
16-wide vector processing unit (VPU) (see the 16-wide ALU
928), which executes integer, single-precision float, and
double-precision float instructions. The VPU supports swiz-
zling the register inputs with swizzle unit 920, numeric
conversion with numeric convert units 922A-B, and repli-
cation with replication unit 924 on the memory input. Write
mask registers 926 allow predicating the resulting vector
writes.

Register data can be swizzled in a variety of ways, e.g. to
support matrix multiplication. Data from memory can be
replicated across the VPU lanes. This is a common operation
in both graphics and non-graphics parallel data processing,
which significantly increases the cache efficiency.

The ring network is bi-directional to allow agents such as
CPU cores, .2 caches and other logic blocks to communi-
cate with each other within the chip. Each ring data-path is
812-bits wide per direction.

Exemplary Out-of-Order Architecture—FIG. 10

FIG. 10 is a block diagram illustrating an exemplary
out-of-order architecture according to embodiments of the
invention and can be viewed as a more specific description
of a pipeline such as the pipeline discussed above in FIG. 1.
Specifically, FIG. 10 illustrates a well-known exemplary
out-of-order architecture that has been modified to incorpo-
rate the vector friendly instruction format and execution
thereof. In FIG. 10 arrows denotes a coupling between two
or more units and the direction of the arrow indicates a
direction of data flow between those units. FIG. 10 includes
a front end unit 1005 coupled to an execution engine unit
1010 and a memory unit 1015; the execution engine unit
1010 is further coupled to the memory unit 1015.

The front end unit 1005 includes a level 1 (L1) branch
prediction unit 1020 coupled to a level 2 (L2) branch
prediction unit 1022. The L1 and 1.2 brand prediction units
1020 and 1022 are coupled to an L1 instruction cache unit
1024. The L1 instruction cache unit 1024 is coupled to an

US 9,442,723 B2

19

instruction translation lookaside buffer (TLB) 1026 which is
further coupled to an instruction fetch and predecode unit
1028. The instruction fetch and predecode unit 1028 is
coupled to an instruction queue unit 1030 which is further
coupled a decode unit 1032. The decode unit 1032 com-
prises a complex decoder unit 1034 and three simple
decoder units 1036, 1038, and 1040. The decode unit 1032
includes a micro-code ROM unit 1042. The decode unit
1032 may operate as previously described above in the
decode stage section. The L1 instruction cache unit 1024 is
further coupled to an L.2 cache unit 1048 in the memory unit
1015. The instruction TLB unit 1026 is further coupled to a
second level TLB unit 1046 in the memory unit 1015. The
decode unit 1032, the micro-code ROM unit 1042, and a
loop stream detector unit 1044 are each coupled to a
rename/allocator unit 1056 in the execution engine unit
1010.

The execution engine unit 1010 includes the rename/
allocator unit 1056 that is coupled to a retirement unit 1074
and a unified scheduler unit 1058. The retirement unit 1074
is further coupled to execution units 1060 and includes a
reorder buffer unit 1078. The unified scheduler unit 1058 is
further coupled to a physical register files unit 1076 which
is coupled to the execution units 1060. The physical register
files unit 1076 comprises a vector registers unit 1077A, a
write mask registers unit 1077B, and a scalar registers unit
1077C; these register units may provide the vector registers
810, the vector mask registers 815, and the general purpose
registers 825; and the physical register files unit 1076 may
include additional register files not shown (e.g., the scalar
floating point stack register file 845 aliased on the MMX
packed integer flat register file 850). The execution units
1060 include three mixed scalar and vector units 1062, 1064,
and 1072; a load unit 1066; a store address unit 1068; a store
data unit 1070. The load unit 1066, the store address unit
1068, and the store data unit 1070 are each coupled further
to a data TLB unit 1052 in the memory unit 1015.

The memory unit 1015 includes the second level TLB unit
1046 which is coupled to the data TLB unit 1052. The data
TLB unit 1052 is coupled to an L1 data cache unit 1054. The
L1 data cache unit 1054 is further coupled to an .2 cache
unit 1048. In some embodiments, the L2 cache unit 1048 is
further coupled to L3 and higher cache units 1050 inside
and/or outside of the memory unit 1015.

By way of example, the exemplary out-of-order architec-
ture may implement the process pipeline 8200 as follows: 1)
the instruction fetch and predecode unit 1028 perform the
fetch and length decoding stages; 2) the decode unit 1032
performs the decode stage; 3) the rename/allocator unit 1056
performs the allocation stage and renaming stage; 4) the
unified scheduler 1058 performs the schedule stage; 5) the
physical register files unit 1076, the reorder buffer unit 1078,
and the memory unit 1015 perform the register read/memory
read stage; the execution units 1060 perform the execute/
data transform stage; 6) the memory unit 1015 and the
reorder buffer unit 1078 perform the write back/memory
write stage 1960; 7) the retirement unit 1074 performs the
ROB read stage; 8) various units may be involved in the
exception handling stage; and 9) the retirement unit 1074
and the physical register files unit 1076 perform the commit
stage.

Exemplary Single Core and Multicore Processors—FIG.
15

FIG. 15 is a block diagram of a single core processor and
a multicore processor 1500 with integrated memory con-
troller and graphics according to embodiments of the inven-
tion. The solid lined boxes in FIG. 15 illustrate a processor

10

15

20

25

30

35

40

45

50

55

60

65

20

1500 with a single core 1502A, a system agent 1510, a set
of one or more bus controller units 1516, while the optional
addition of the dashed lined boxes illustrates an alternative
processor 1500 with multiple cores 1502A-N, a set of one or
more integrated memory controller unit(s) 1514 in the
system agent unit 1510, and an integrated graphics logic
1508.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache
units 1506, and external memory (not shown) coupled to the
set of integrated memory controller units 1514. The set of
shared cache units 1506 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1512 interconnects the integrated
graphics logic 1508, the set of shared cache units 1506, and
the system agent unit 1510, alternative embodiments may
use any number of well-known techniques for interconnect-
ing such units.

In some embodiments, one or more of the cores 1502A-N
are capable of multi-threading. The system agent 1510
includes those components coordinating and operating cores
1502A-N. The system agent unit 1510 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1502A-N and the
integrated graphics logic 1508. The display unit is for
driving one or more externally connected displays.

The cores 1502A-N may be homogenous or heteroge-
neous in terms of architecture and/or instruction set. For
example, some of the cores 1502A-N may be in order (e.g.,
like that shown in FIGS. 9A and 9B) while others are
out-of-order (e.g., like that shown in FIG. 10). As another
example, two or more of the cores 1502A-N may be capable
of executing the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set. At least one of the cores is capable
of executing the vector friendly instruction format described
herein.

The processor may be a general-purpose processor, such
as a Core™ i3, i5, i7, 2 Duo and Quad, Xeon™, or
Ttanium™ processor, which are available from Intel Corpo-
ration, of Santa Clara, Calif. Alternatively, the processor
may be from another company. The processor may be a
special-purpose processor, such as, for example, a network
or communication processor, compression engine, graphics
processor, co-processor, embedded processor, or the like.
The processor may be implemented on one or more chips.
The processor 1500 may be a part of and/or may be
implemented on one or more substrates using any of a
number of process technologies, such as, for example,
BiCMOS, CMOS, or NMOS.

Exemplary Computer Systems and Processors—FIGS.
11-13

FIGS. 11-13 are exemplary systems suitable for including
the processor 1500, while FIG. 88 is an exemplary system on
a chip (SoC) that may include one or more of the cores 1502.
Other system designs and configurations known in the arts
for laptops, desktops, handheld PCs, personal digital assis-
tants, engineering workstations, servers, network devices,
network hubs, switches, embedded processors, digital signal
processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media
players, hand held devices, and various other electronic
devices, are also suitable. In general, a huge variety of

US 9,442,723 B2

21

systems or electronic devices capable of incorporating a
processor and/or other execution logic as disclosed herein
are generally suitable.

Referring now to FIG. 11, shown is a block diagram of a
system 1100 in accordance with one embodiment of the
invention. The system 1100 may include one or more
processors 1110, 1115, which are coupled to graphics
memory controller hub (GMCH) 1120. The optional nature
of additional processors 1115 is denoted in FIG. 11 with
broken lines.

Each processor 1110, 1115 may be some version of
processor 1500. However, it should be noted that it is
unlikely that integrated graphics logic and integrated
memory control units would exist in the processors 1110,
1115.

FIG. 11 illustrates that the GMCH 1120 may be coupled
to a memory 1140 that may be, for example, a dynamic
random access memory (DRAM). The DRAM may, for at
least one embodiment, be associated with a non-volatile
cache.

The GMCH 1120 may be a chipset, or a portion of a
chipset. The GMCH 1120 may communicate with the pro-
cessor(s) 1110, 1115 and control interaction between the
processor(s) 1110, 1115 and memory 1140. The GMCH 1120
may also act as an accelerated bus interface between the
processor(s) 1110, 1115 and other elements of the system
1100. For at least one embodiment, the GMCH 1120 com-
municates with the processor(s) 1110, 1115 via a multi-drop
bus, such as a frontside bus (FSB) 1195.

Furthermore, GMCH 1120 is coupled to a display 1145
(such as a flat panel display). GMCH 1120 may include an
integrated graphics accelerator. GMCH 1120 is further
coupled to an input/output (I/O) controller hub (ICH) 1150,
which may be used to couple various peripheral devices to
system 1100. Shown for example in the embodiment of FIG.
11 is an external graphics device 1160, which may be a
discrete graphics device coupled to ICH 1150, along with
another peripheral device 1170.

Alternatively, additional or different processors may also
be present in the system 1100. For example, additional
processor(s) 1115 may include additional processors(s) that
are the same as processor 1110, additional processor(s) that
are heterogeneous or asymmetric to processor 1110, accel-
erators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or
any other processor. There can be a variety of differences
between the physical resources 1110, 1115 in terms of a
spectrum of metrics of merit including architectural, micro-
architectural, thermal, power consumption characteristics,
and the like. These differences may effectively manifest
themselves as asymmetry and heterogeneity amongst the
processing elements 1110, 1115. For at least one embodi-
ment, the various processing elements 1110, 1115 may reside
in the same die package.

Referring now to FIG. 12, shown is a block diagram of a
second system 1200 in accordance with an embodiment of
the present invention. As shown in FIG. 12, multiprocessor
system 1200 is a point-to-point interconnect system, and
includes a first processor 1270 and a second processor 1280
coupled via a point-to-point interconnect 1250. As shown in
FIG. 12, each of processors 1270 and 1280 may be some
version of the processor 1500.

Alternatively, one or more of processors 1270, 1280 may
be an element other than a processor, such as an accelerator
or a field programmable gate array.

While shown with only two processors 1270, 1280, it is
to be understood that the scope of the present invention is

10

15

20

35

40

45

55

65

22

not so limited. In other embodiments, one or more additional
processing elements may be present in a given processor.

Processor 1270 may further include an integrated memory
controller hub (IMC) 1272 and point-to-point (P-P) inter-
faces 1276 and 1278. Similarly, second processor 1280 may
include a IMC 1282 and P-P interfaces 1286 and 1288.
Processors 1270, 1280 may exchange data via a point-to-
point (PtP) interface 1250 using PtP interface circuits 1278,
1288. As shown in FIG. 12, IMC’s 1272 and 1282 couple the
processors to respective memories, namely a memory 1242
and a memory 1244, which may be portions of main
memory locally attached to the respective processors.

Processors 1270, 1280 may each exchange data with a
chipset 1290 via individual P-P interfaces 1252, 1254 using
point to point interface circuits 1276, 1294, 1286, 1298.
Chipset 1290 may also exchange data with a high-perfor-
mance graphics circuit 1238 via a high-performance graph-
ics interface 1239.

A shared cache (not shown) may be included in either
processor outside of both processors, yet connected with the
processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1290 may be coupled to a first bus 1216 via an
interface 1296. In one embodiment, first bus 1216 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present invention
is not so limited.

As shown in FIG. 12, various /O devices 1214 may be
coupled to first bus 1216, along with a bus bridge 1218
which couples first bus 1216 to a second bus 1220. In one
embodiment, second bus 1220 may be a low pin count
(LPC) bus. Various devices may be coupled to second bus
1220 including, for example, a keyboard/mouse 1222, com-
munication devices 1226 and a data storage unit 1228 such
as a disk drive or other mass storage device which may
include code 1230, in one embodiment. Further, an audio I/O
1224 may be coupled to second bus 1220. Note that other
architectures are possible. For example, instead of the point-
to-point architecture of FIG. 12, a system may implement a
multi-drop bus or other such architecture.

Referring now to FIG. 13, shown is a block diagram of a
third system 1300 in accordance with an embodiment of the
present invention. Like elements in FIGS. 12 and 13 bear
like reference numerals, and certain aspects of FIG. 12 have
been omitted from FIG. 13 in order to avoid obscuring other
aspects of FIG. 13.

FIG. 13 illustrates that the processing elements 1270,
1280 may include integrated memory and 1/O control logic
(“CL”) 1272 and 1282, respectively. For at least one
embodiment, the CL 1272, 1282 may include memory
controller hub logic (IMC) such as that described above in
connection with FIGS. 89 and 12. In addition. CL 1272,
1282 may also include 1/O control logic. FIG. 13 illustrates
that not only are the memories 1242, 1244 coupled to the CL
1272, 1282, but also that I/O devices 1314 are also coupled
to the control logic 1272, 1282. Legacy [/O devices 1315 are
coupled to the chipset 1290.

Referring now to FIG. 14, shown is a block diagram of a
SoC 1400 in accordance with an embodiment of the present
invention. Similar elements in FIG. 15 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 14, an interconnect unit(s)
1402 is coupled to: an application processor 1410 which
includes a set of one or more cores 1502A-N and shared
cache unit(s) 1506; a system agent unit 1510; a bus con-

US 9,442,723 B2

23

troller unit(s) 1516; an integrated memory controller unit(s)
1514; a set or one or more media processors 1420 which
may include integrated graphics logic 1508, an image pro-
cessor 1424 for providing still and/or video camera func-
tionality, an audio processor 1426 for providing hardware
audio acceleration, and a video processor 1428 for providing
video encode/decode acceleration; an static random access
memory (SRAM) unit 1430; a direct memory access (DMA)
unit 1432; and a display unit 1440 for coupling to one or
more external displays.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi-
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.

Program code may be applied to input data to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks (compact disk
read-only memories (CD-ROMs), compact disk rewritables
(CD-RWs)), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), magnetic or optical
cards, or any other type of media suitable for storing
electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions the vector friendly instruction format or con-
taining design data, such as Hardware Description Language
(HDL), which defines structures, circuits, apparatuses, pro-
cessors and/or system features described herein. Such
embodiments may also be referred to as program products.

10

30

35

40

45

55

60

24

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruc-
tion converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction con-
verter may be on processor, off processor, or part on and part
off processor.

FIG. 16 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 16
shows a program in a high level language 1602 may be
compiled using an x86 compiler 1604 to generate x86 binary
code 1606 that may be natively executed by a processor with
at least one x86 instruction set core 1616 (it is assume that
some of the instructions that were compiled are in the vector
friendly instruction format). The processor with at least one
x86 instruction set core 1616 represents any processor that
can perform substantially the same functions as a Intel
processor with at least one x86 instruction set core by
compatibly executing or otherwise processing (1) a substan-
tial portion of the instruction set of the Intel x86 instruction
set core or (2) object code versions of applications or other
software targeted to run on an Intel processor with at least
one x86 instruction set core, in order to achieve substantially
the same result as an Intel processor with at least one x86
instruction set core. The x86 compiler 1604 represents a
compiler that is operable to generate x86 binary code 1606
(e.g., object code) that can, with or without additional
linkage processing, be executed on the processor with at
least one x86 instruction set core 1616. Similarly, FIG. 90
shows the program in the high level language 1602 may be
compiled using an alternative instruction set compiler 1608
to generate alternative instruction set binary code 1610 that
may be natively executed by a processor without at least one
x86 instruction set core 1614 (e.g., a processor with cores
that execute the MIPS instruction set of MIPS Technologies
of Sunnyvale, Calif. and/or that execute the ARM instruction
set of ARM Holdings of Sunnyvale, Calif.). The instruction
converter 1612 is used to convert the x86 binary code 1606
into code that may be natively executed by the processor
without an x86 instruction set core 1614. This converted
code is not likely to be the same as the alternative instruction
set binary code 1610 because an instruction converter
capable of this is difficult to make; however, the converted
code will accomplish the general operation and be made up
of instructions from the alternative instruction set. Thus, the
instruction converter 1612 represents software, firmware,
hardware, or a combination thereof that, through emulation,
simulation or any other process, allows a processor or other
electronic device that does not have an x86 instruction set
processor or core to execute the x86 binary code 1606.

Certain operations of the instruction(s) in the vector
friendly instruction format disclosed herein may be per-
formed by hardware components and may be embodied in
machine-executable instructions that are used to cause, or at
least result in, a circuit or other hardware component pro-
grammed with the instructions performing the operations.
The circuit may include a general-purpose or special-pur-

US 9,442,723 B2

25

pose processor, or logic circuit, to name just a few examples.
The operations may also optionally be performed by a
combination of hardware and software. Execution logic
and/or a processor may include specific or particular cir-
cuitry or other logic responsive to a machine instruction or
one or more control signals derived from the machine
instruction to store an instruction specified result operand.
For example, embodiments of the instruction(s) disclosed
herein may be executed in one or more the systems of FIGS.
11-16 and embodiments of the instruction(s) in the vector
friendly instruction format may be stored in program code to
be executed in the systems. Additionally, the processing
elements of these figures may utilize one of the detailed
pipelines and/or architectures (e.g., the in-order and out-of-
order architectures) detailed herein. For example, the decode
unit of the in-order architecture may decode the
instruction(s), pass the decoded instruction to a vector or
scalar unit, etc.

The above description is intended to illustrate preferred
embodiments of the present invention. From the discussion
above it should also be apparent that especially in such an
area of technology, where growth is fast and further
advancements are not easily foreseen, the invention can may
be modified in arrangement and detail by those skilled in the
art without departing from the principles of the present
invention within the scope of the accompanying claims and
their equivalents. For example, one or more operations of a
method may be combined or further broken apart.

Alternative Embodiments

While embodiments have been described which would
natively execute the vector friendly instruction format, alter-
native embodiments of the invention may execute the vector
friendly instruction format through an emulation layer run-
ning on a processor that executes a different instruction set
(e.g., a processor that executes the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif., a processor that
executes the ARM instruction set of ARM Holdings of
Sunnyvale, Calif.). Also, while the flow diagrams in the
figures show a particular order of operations performed by
certain embodiments of the invention, it should be under-
stood that such order is exemplary (e.g., alternative embodi-
ments may perform the operations in a different order,
combine certain operations, overlap certain operations, etc.).

In the description above, for the purposes of explanation,
numerous specific details have been set forth in order to
provide a thorough understanding of the embodiments of the
invention. It will be apparent however, to one skilled in the
art, that one or more other embodiments may be practiced
without some of these specific details. The particular
embodiments described are not provided to limit the inven-
tion but to illustrate embodiments of the invention. The
scope of the invention is not to be determined by the specific
examples provided above but only by the claims below.

What is claimed is:

1. An apparatus comprising:

an instruction execution pipeline having a functional unit,

said functional unit comprising the following to sup-
port a first instruction and a second instruction:

adder bank circuitry to respectively add alternating first

input vector elements to respective neighboring ele-
ments of said first input vector in support of said first
instruction, and respectively add elements of one side
of a second input vector to an element of another side
of said second input vector in support of said second
instruction; and

10

15

20

25

30

35

40

45

50

55

60

65

26

pass through selection circuitry to select said respective
neighboring elements for pass through to said first
instruction’s resultant, and to select elements of said
another side of said second input vector for pass
through to said second instruction’s resultant.

2. The apparatus of claim 1 wherein said functional unit
further comprises adder selection circuitry that precedes said
adder bank circuitry, said adder selection circuitry to select
respective elements of said first and second input vectors for
addition in said adder bank circuitry.

3. The apparatus of claim 2 wherein adder selection
circuitry comprises a first multiplexer bank.

4. The apparatus of claim 3 wherein said pass through
selection circuitry comprises a second multiplexer bank.

5. The apparatus of claim 4 wherein said first multiplexer
bank and second multiplexer bank are coupled to read-only
memory (ROM) circuitry to receive control inputs, said
ROM circuitry containing microcode for said first and
second instructions.

6. The apparatus of claim 1 wherein said element of
another side of said second input vector is a highest ordered
element of said another side of said second input vector.

7. The apparatus of claim 6 wherein said elements of one
side of said second input vector are higher ordered than said
element of said another side of said second input vector.

8. A method comprising:

performing an image integral calculation by:

creating a second vector by executing a first instruction

that adds alternating elements of a first vector to
respective neighboring elements of said first vector and
presents resulting summations into said second vector,
and passes through said respective neighboring ele-
ments to said second vector; and

creating a third vector by executing a second instruction

that adds elements of one side of said second vector to
an element of another side of said second vector and
passes through said another side of said second vector.

9. The method of claim 8 wherein said method comprises,
in performing said first instruction, passing first control
inputs from a read-only memory (ROM) to selection cir-
cuitry, and in performing said second instruction, passing
second control inputs from said ROM to said selection
circuitry.

10. The method of claim 9 wherein said control inputs
determine which elements of said first vector are passed
through to said second vector, and which elements of said
second vector are passed through to said third vector.

11. The method of claim 8 wherein said element of
another side of said second vector is a highest ordered
element of said another side of said second vector.

12. The method of claim 11 wherein said elements of one
side of said second vector are higher ordered than said
element of said another side of said second vector.

13. The method of claim 8 wherein said first and second
instructions are executed by a same functional unit.

14. A non-transitory machine readable medium containing
program code that when processed by a computer causes the
computer to perform a method, said method comprising:

performing an image integral calculation by:

creating a second vector by executing a first instruction

that adds alternating elements of a first vector to
respective neighboring elements of said first vector and
presents resulting summations into said second vector,
and passes through said respective neighboring ele-
ments to said second vector; and

US 9,442,723 B2

27

creating a third vector by executing a second instruction
that adds elements of one side of said second vector to
an element of another side of said second vector and
passes through said another side of said second vector.

15. The non-transitory machine readable medium of claim
14 wherein said method comprises, in performing said first
instruction, passing first control inputs from a read-only
memory (ROM) to selection circuitry, and in performing
said second instruction, passing second control inputs from
said ROM to said selection circuitry.

16. The non-transitory machine readable medium of claim
15 wherein said control inputs determine which elements of
said first vector are passed through to said second vector, and
which elements of said second vector are passed through to
said third vector.

17. The non-transitory machine readable medium of claim
14 wherein said element of another side of said second
vector is a highest ordered element of said another side of
said second vector.

10

28

18. The non-transitory machine readable medium of claim
17 wherein said elements of one side of said second vector
are higher ordered than said element of said another side of
said second vector.

19. A non-transitory machine readable medium containing
program code that when processed by a computer causes the
computer to perform a method, said method comprising:

creating object code for an image integral calculation by

performing the following:

creating a first instruction that creates a second vector by

adding alternating elements of a first vector to respec-
tive neighboring elements of said first vector and
presents resulting summations into said second vector,
and passes through said respective neighboring ele-
ments to said second vector; and

creating a second instruction that creates a third vector by

adding elements of one side of said second vector to an
element of another side of said second vector and
passes through said another side of said second vector.

#* #* #* #* #*

